Statistik mit Nyxus#

Die Nyxus-Bibliothek enthält eine große Anzahl von Merkmalen, die aus Bilddaten extrahiert werden können. Sie kann mit mamba/conda installiert werden:

pip install nyxus==0.5.0

Siehe auch

Bevor wir Messungen durchführen können, benötigen wir ein image und ein entsprechendes label_image. Daher wiederholen wir Filterung, Schwellenwertbildung und Beschriftung:

from skimage.io import imread
import stackview

from nyxus import Nyxus
intensity_image = imread("../../data/blobs.tif")

stackview.insight(intensity_image)
shape(254, 256)
dtypeuint8
size63.5 kB
min8
max248
label_image = imread("../../data/blobs_labeled.tif")

# Visualisierung
stackview.insight(label_image)
shape(254, 256)
dtypeuint32
size254.0 kB
min0
max63

Messungen#

Wir verwenden jetzt die Funktion featurize von Nyxus, um quantitative Messungen zu extrahieren. Zunächst verwenden wir einfach ALL Merkmale.

nyx = Nyxus(["*ALL*"])
features = nyx.featurize(intensity_image, label_image)
features
mask_image intensity_image label INTEGRATED_INTENSITY MEAN MEDIAN MIN MAX RANGE STANDARD_DEVIATION ... WEIGHTED_HU_M5 WEIGHTED_HU_M6 WEIGHTED_HU_M7 GABOR_0 GABOR_1 GABOR_2 GABOR_3 GABOR_4 GABOR_5 GABOR_6
0 Segmentation0 Intensity0 1 98336.0 159.119741 176.0 40.0 232.0 192.0 56.038438 ... 2.775224e-31 4.901126e-10 2.447020e-32 0.227322 0.0 0.0 0.800000 0.755191 0.726776 0.710383
1 Segmentation0 Intensity0 2 41104.0 148.389892 168.0 48.0 224.0 176.0 48.834751 ... 1.865947e-12 1.094818e-03 -2.652105e-12 0.375358 0.0 0.0 0.922636 0.899713 0.888252 0.856734
2 Segmentation0 Intensity0 3 151632.0 178.180964 200.0 40.0 248.0 208.0 57.811867 ... 5.235402e-13 3.374755e-04 -9.289798e-13 0.064581 0.0 0.0 0.957619 0.945510 0.926337 0.913219
3 Segmentation0 Intensity0 4 106800.0 181.942078 208.0 24.0 248.0 224.0 68.344166 ... -2.119980e-10 3.721221e-03 7.231199e-10 0.018598 0.0 0.0 0.932761 0.925608 0.907010 0.879828
4 Segmentation0 Intensity0 5 110136.0 188.266667 216.0 40.0 248.0 208.0 57.713131 ... 9.503623e-06 -5.115360e-03 4.167152e-06 0.000000 0.0 0.0 0.976923 0.972308 0.953846 0.940000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
58 Segmentation0 Intensity0 59 2752.0 105.846154 104.0 88.0 136.0 48.0 14.004834 ... NaN NaN NaN inf inf inf inf inf inf inf
59 Segmentation0 Intensity0 60 22632.0 136.337349 140.0 48.0 216.0 168.0 54.780505 ... NaN NaN NaN 0.754808 0.0 0.0 0.966346 0.956731 0.927885 0.889423
60 Segmentation0 Intensity0 61 20040.0 137.260274 132.0 40.0 248.0 208.0 59.842097 ... NaN NaN NaN 0.812500 0.0 0.0 0.988636 0.977273 0.954545 0.914773
61 Segmentation0 Intensity0 62 14320.0 132.592593 120.0 40.0 248.0 208.0 63.382099 ... NaN NaN NaN 0.812030 0.0 0.0 0.977444 0.969925 0.932331 0.894737
62 Segmentation0 Intensity0 63 12880.0 125.048544 120.0 48.0 224.0 176.0 51.894195 ... NaN NaN NaN 0.866667 0.0 0.0 1.000000 1.000000 0.966667 0.950000

63 rows × 417 columns

Diese Tabelle hat eine große Anzahl von Spalten.

print([f for f in features.columns])
['mask_image', 'intensity_image', 'label', 'INTEGRATED_INTENSITY', 'MEAN', 'MEDIAN', 'MIN', 'MAX', 'RANGE', 'STANDARD_DEVIATION', 'STANDARD_ERROR', 'SKEWNESS', 'KURTOSIS', 'HYPERSKEWNESS', 'HYPERFLATNESS', 'MEAN_ABSOLUTE_DEVIATION', 'ENERGY', 'ROOT_MEAN_SQUARED', 'ENTROPY', 'MODE', 'UNIFORMITY', 'UNIFORMITY_PIU', 'P01', 'P10', 'P25', 'P75', 'P90', 'P99', 'INTERQUARTILE_RANGE', 'ROBUST_MEAN_ABSOLUTE_DEVIATION', 'AREA_PIXELS_COUNT', 'AREA_UM2', 'CENTROID_X', 'CENTROID_Y', 'WEIGHTED_CENTROID_Y', 'WEIGHTED_CENTROID_X', 'MASS_DISPLACEMENT', 'COMPACTNESS', 'BBOX_YMIN', 'BBOX_XMIN', 'BBOX_HEIGHT', 'BBOX_WIDTH', 'DIAMETER_EQUAL_AREA', 'EXTENT', 'ASPECT_RATIO', 'MAJOR_AXIS_LENGTH', 'MINOR_AXIS_LENGTH', 'ECCENTRICITY', 'ELONGATION', 'ORIENTATION', 'ROUNDNESS', 'PERIMETER', 'DIAMETER_EQUAL_PERIMETER', 'EDGE_MEAN_INTENSITY', 'EDGE_STDDEV_INTENSITY', 'EDGE_MAX_INTENSITY', 'EDGE_MIN_INTENSITY', 'EDGE_INTEGRATED_INTENSITY', 'CIRCULARITY', 'CONVEX_HULL_AREA', 'SOLIDITY', 'EROSIONS_2_VANISH', 'EROSIONS_2_VANISH_COMPLEMENT', 'FRACT_DIM_BOXCOUNT', 'FRACT_DIM_PERIMETER', 'MIN_FERET_DIAMETER', 'MAX_FERET_DIAMETER', 'MIN_FERET_ANGLE', 'MAX_FERET_ANGLE', 'STAT_FERET_DIAM_MIN', 'STAT_FERET_DIAM_MAX', 'STAT_FERET_DIAM_MEAN', 'STAT_FERET_DIAM_MEDIAN', 'STAT_FERET_DIAM_STDDEV', 'STAT_FERET_DIAM_MODE', 'STAT_MARTIN_DIAM_MIN', 'STAT_MARTIN_DIAM_MAX', 'STAT_MARTIN_DIAM_MEAN', 'STAT_MARTIN_DIAM_MEDIAN', 'STAT_MARTIN_DIAM_STDDEV', 'STAT_MARTIN_DIAM_MODE', 'STAT_NASSENSTEIN_DIAM_MIN', 'STAT_NASSENSTEIN_DIAM_MAX', 'STAT_NASSENSTEIN_DIAM_MEAN', 'STAT_NASSENSTEIN_DIAM_MEDIAN', 'STAT_NASSENSTEIN_DIAM_STDDEV', 'STAT_NASSENSTEIN_DIAM_MODE', 'MAXCHORDS_MAX', 'MAXCHORDS_MAX_ANG', 'MAXCHORDS_MIN', 'MAXCHORDS_MIN_ANG', 'MAXCHORDS_MEDIAN', 'MAXCHORDS_MEAN', 'MAXCHORDS_MODE', 'MAXCHORDS_STDDEV', 'ALLCHORDS_MAX', 'ALLCHORDS_MAX_ANG', 'ALLCHORDS_MIN', 'ALLCHORDS_MIN_ANG', 'ALLCHORDS_MEDIAN', 'ALLCHORDS_MEAN', 'ALLCHORDS_MODE', 'ALLCHORDS_STDDEV', 'EULER_NUMBER', 'EXTREMA_P1_X', 'EXTREMA_P1_Y', 'EXTREMA_P2_X', 'EXTREMA_P2_Y', 'EXTREMA_P3_X', 'EXTREMA_P3_Y', 'EXTREMA_P4_X', 'EXTREMA_P4_Y', 'EXTREMA_P5_X', 'EXTREMA_P5_Y', 'EXTREMA_P6_X', 'EXTREMA_P6_Y', 'EXTREMA_P7_X', 'EXTREMA_P7_Y', 'EXTREMA_P8_X', 'EXTREMA_P8_Y', 'POLYGONALITY_AVE', 'HEXAGONALITY_AVE', 'HEXAGONALITY_STDDEV', 'DIAMETER_MIN_ENCLOSING_CIRCLE', 'DIAMETER_CIRCUMSCRIBING_CIRCLE', 'DIAMETER_INSCRIBING_CIRCLE', 'GEODETIC_LENGTH', 'THICKNESS', 'ROI_RADIUS_MEAN', 'ROI_RADIUS_MAX', 'ROI_RADIUS_MEDIAN', 'NUM_NEIGHBORS', 'PERCENT_TOUCHING', 'CLOSEST_NEIGHBOR1_DIST', 'CLOSEST_NEIGHBOR1_ANG', 'CLOSEST_NEIGHBOR2_DIST', 'CLOSEST_NEIGHBOR2_ANG', 'ANG_BW_NEIGHBORS_MEAN', 'ANG_BW_NEIGHBORS_STDDEV', 'ANG_BW_NEIGHBORS_MODE', 'GLCM_ANGULAR2NDMOMENT_0', 'GLCM_ANGULAR2NDMOMENT_45', 'GLCM_ANGULAR2NDMOMENT_90', 'GLCM_ANGULAR2NDMOMENT_135', 'GLCM_CONTRAST_0', 'GLCM_CONTRAST_45', 'GLCM_CONTRAST_90', 'GLCM_CONTRAST_135', 'GLCM_CORRELATION_0', 'GLCM_CORRELATION_45', 'GLCM_CORRELATION_90', 'GLCM_CORRELATION_135', 'GLCM_DIFFERENCEAVERAGE', 'GLCM_DIFFERENCEENTROPY_0', 'GLCM_DIFFERENCEENTROPY_45', 'GLCM_DIFFERENCEENTROPY_90', 'GLCM_DIFFERENCEENTROPY_135', 'GLCM_DIFFERENCEVARIANCE_0', 'GLCM_DIFFERENCEVARIANCE_45', 'GLCM_DIFFERENCEVARIANCE_90', 'GLCM_DIFFERENCEVARIANCE_135', 'GLCM_ENERGY', 'GLCM_ENTROPY_0', 'GLCM_ENTROPY_45', 'GLCM_ENTROPY_90', 'GLCM_ENTROPY_135', 'GLCM_HOMOGENEITY', 'GLCM_INFOMEAS1_0', 'GLCM_INFOMEAS1_45', 'GLCM_INFOMEAS1_90', 'GLCM_INFOMEAS1_135', 'GLCM_INFOMEAS2_0', 'GLCM_INFOMEAS2_45', 'GLCM_INFOMEAS2_90', 'GLCM_INFOMEAS2_135', 'GLCM_INVERSEDIFFERENCEMOMENT_0', 'GLCM_INVERSEDIFFERENCEMOMENT_45', 'GLCM_INVERSEDIFFERENCEMOMENT_90', 'GLCM_INVERSEDIFFERENCEMOMENT_135', 'GLCM_SUMAVERAGE_0', 'GLCM_SUMAVERAGE_45', 'GLCM_SUMAVERAGE_90', 'GLCM_SUMAVERAGE_135', 'GLCM_SUMENTROPY_0', 'GLCM_SUMENTROPY_45', 'GLCM_SUMENTROPY_90', 'GLCM_SUMENTROPY_135', 'GLCM_SUMVARIANCE_0', 'GLCM_SUMVARIANCE_45', 'GLCM_SUMVARIANCE_90', 'GLCM_SUMVARIANCE_135', 'GLCM_VARIANCE_0', 'GLCM_VARIANCE_45', 'GLCM_VARIANCE_90', 'GLCM_VARIANCE_135', 'GLRLM_SRE_0', 'GLRLM_SRE_45', 'GLRLM_SRE_90', 'GLRLM_SRE_135', 'GLRLM_LRE_0', 'GLRLM_LRE_45', 'GLRLM_LRE_90', 'GLRLM_LRE_135', 'GLRLM_GLN_0', 'GLRLM_GLN_45', 'GLRLM_GLN_90', 'GLRLM_GLN_135', 'GLRLM_GLNN_0', 'GLRLM_GLNN_45', 'GLRLM_GLNN_90', 'GLRLM_GLNN_135', 'GLRLM_RLN_0', 'GLRLM_RLN_45', 'GLRLM_RLN_90', 'GLRLM_RLN_135', 'GLRLM_RLNN_0', 'GLRLM_RLNN_45', 'GLRLM_RLNN_90', 'GLRLM_RLNN_135', 'GLRLM_RP_0', 'GLRLM_RP_45', 'GLRLM_RP_90', 'GLRLM_RP_135', 'GLRLM_GLV_0', 'GLRLM_GLV_45', 'GLRLM_GLV_90', 'GLRLM_GLV_135', 'GLRLM_RV_0', 'GLRLM_RV_45', 'GLRLM_RV_90', 'GLRLM_RV_135', 'GLRLM_RE_0', 'GLRLM_RE_45', 'GLRLM_RE_90', 'GLRLM_RE_135', 'GLRLM_LGLRE_0', 'GLRLM_LGLRE_45', 'GLRLM_LGLRE_90', 'GLRLM_LGLRE_135', 'GLRLM_HGLRE_0', 'GLRLM_HGLRE_45', 'GLRLM_HGLRE_90', 'GLRLM_HGLRE_135', 'GLRLM_SRLGLE_0', 'GLRLM_SRLGLE_45', 'GLRLM_SRLGLE_90', 'GLRLM_SRLGLE_135', 'GLRLM_SRHGLE_0', 'GLRLM_SRHGLE_45', 'GLRLM_SRHGLE_90', 'GLRLM_SRHGLE_135', 'GLRLM_LRLGLE_0', 'GLRLM_LRLGLE_45', 'GLRLM_LRLGLE_90', 'GLRLM_LRLGLE_135', 'GLRLM_LRHGLE_0', 'GLRLM_LRHGLE_45', 'GLRLM_LRHGLE_90', 'GLRLM_LRHGLE_135', 'GLSZM_SAE', 'GLSZM_LAE', 'GLSZM_GLN', 'GLSZM_GLNN', 'GLSZM_SZN', 'GLSZM_SZNN', 'GLSZM_ZP', 'GLSZM_GLV', 'GLSZM_ZV', 'GLSZM_ZE', 'GLSZM_LGLZE', 'GLSZM_HGLZE', 'GLSZM_SALGLE', 'GLSZM_SAHGLE', 'GLSZM_LALGLE', 'GLSZM_LAHGLE', 'GLDM_SDE', 'GLDM_LDE', 'GLDM_GLN', 'GLDM_DN', 'GLDM_DNN', 'GLDM_GLV', 'GLDM_DV', 'GLDM_DE', 'GLDM_LGLE', 'GLDM_HGLE', 'GLDM_SDLGLE', 'GLDM_SDHGLE', 'GLDM_LDLGLE', 'GLDM_LDHGLE', 'NGTDM_COARSENESS', 'NGTDM_CONTRAST', 'NGTDM_BUSYNESS', 'NGTDM_COMPLEXITY', 'NGTDM_STRENGTH', 'ZERNIKE2D_0', 'ZERNIKE2D_1', 'ZERNIKE2D_2', 'ZERNIKE2D_3', 'ZERNIKE2D_4', 'ZERNIKE2D_5', 'ZERNIKE2D_6', 'ZERNIKE2D_7', 'ZERNIKE2D_8', 'ZERNIKE2D_9', 'ZERNIKE2D_10', 'ZERNIKE2D_11', 'ZERNIKE2D_12', 'ZERNIKE2D_13', 'ZERNIKE2D_14', 'ZERNIKE2D_15', 'ZERNIKE2D_16', 'ZERNIKE2D_17', 'ZERNIKE2D_18', 'ZERNIKE2D_19', 'ZERNIKE2D_20', 'ZERNIKE2D_21', 'ZERNIKE2D_22', 'ZERNIKE2D_23', 'ZERNIKE2D_24', 'ZERNIKE2D_25', 'ZERNIKE2D_26', 'ZERNIKE2D_27', 'ZERNIKE2D_28', 'ZERNIKE2D_29', 'FRAC_AT_D_0', 'FRAC_AT_D_1', 'FRAC_AT_D_2', 'FRAC_AT_D_3', 'FRAC_AT_D_4', 'FRAC_AT_D_5', 'FRAC_AT_D_6', 'FRAC_AT_D_7', 'MEAN_FRAC_0', 'MEAN_FRAC_1', 'MEAN_FRAC_2', 'MEAN_FRAC_3', 'MEAN_FRAC_4', 'MEAN_FRAC_5', 'MEAN_FRAC_6', 'MEAN_FRAC_7', 'RADIAL_CV_0', 'RADIAL_CV_1', 'RADIAL_CV_2', 'RADIAL_CV_3', 'RADIAL_CV_4', 'RADIAL_CV_5', 'RADIAL_CV_6', 'RADIAL_CV_7', 'SPAT_MOMENT_00', 'SPAT_MOMENT_01', 'SPAT_MOMENT_02', 'SPAT_MOMENT_03', 'SPAT_MOMENT_10', 'SPAT_MOMENT_11', 'SPAT_MOMENT_12', 'SPAT_MOMENT_20', 'SPAT_MOMENT_21', 'SPAT_MOMENT_30', 'WEIGHTED_SPAT_MOMENT_00', 'WEIGHTED_SPAT_MOMENT_01', 'WEIGHTED_SPAT_MOMENT_02', 'WEIGHTED_SPAT_MOMENT_03', 'WEIGHTED_SPAT_MOMENT_10', 'WEIGHTED_SPAT_MOMENT_11', 'WEIGHTED_SPAT_MOMENT_12', 'WEIGHTED_SPAT_MOMENT_20', 'WEIGHTED_SPAT_MOMENT_21', 'WEIGHTED_SPAT_MOMENT_30', 'CENTRAL_MOMENT_02', 'CENTRAL_MOMENT_03', 'CENTRAL_MOMENT_11', 'CENTRAL_MOMENT_12', 'CENTRAL_MOMENT_20', 'CENTRAL_MOMENT_21', 'CENTRAL_MOMENT_30', 'WEIGHTED_CENTRAL_MOMENT_02', 'WEIGHTED_CENTRAL_MOMENT_03', 'WEIGHTED_CENTRAL_MOMENT_11', 'WEIGHTED_CENTRAL_MOMENT_12', 'WEIGHTED_CENTRAL_MOMENT_20', 'WEIGHTED_CENTRAL_MOMENT_21', 'WEIGHTED_CENTRAL_MOMENT_30', 'NORM_CENTRAL_MOMENT_02', 'NORM_CENTRAL_MOMENT_03', 'NORM_CENTRAL_MOMENT_11', 'NORM_CENTRAL_MOMENT_12', 'NORM_CENTRAL_MOMENT_20', 'NORM_CENTRAL_MOMENT_21', 'NORM_CENTRAL_MOMENT_30', 'NORM_SPAT_MOMENT_00', 'NORM_SPAT_MOMENT_01', 'NORM_SPAT_MOMENT_02', 'NORM_SPAT_MOMENT_03', 'NORM_SPAT_MOMENT_10', 'NORM_SPAT_MOMENT_20', 'NORM_SPAT_MOMENT_30', 'HU_M1', 'HU_M2', 'HU_M3', 'HU_M4', 'HU_M5', 'HU_M6', 'HU_M7', 'WEIGHTED_HU_M1', 'WEIGHTED_HU_M2', 'WEIGHTED_HU_M3', 'WEIGHTED_HU_M4', 'WEIGHTED_HU_M5', 'WEIGHTED_HU_M6', 'WEIGHTED_HU_M7', 'GABOR_0', 'GABOR_1', 'GABOR_2', 'GABOR_3', 'GABOR_4', 'GABOR_5', 'GABOR_6']

Daher kann man auch nur bestimmte Spalten anfordern, was auch schneller sein sollte.

nyx = Nyxus(['ORIENTATION', 'PERIMETER'])
features = nyx.featurize(intensity_image, label_image)
features
mask_image intensity_image label ORIENTATION PERIMETER
0 Segmentation0 Intensity0 1 54.267520 90.0
1 Segmentation0 Intensity0 2 85.152921 60.0
2 Segmentation0 Intensity0 3 82.808942 101.0
3 Segmentation0 Intensity0 4 86.016115 83.0
4 Segmentation0 Intensity0 5 86.626543 86.0
... ... ... ... ... ...
58 Segmentation0 Intensity0 59 17.474954 14.0
59 Segmentation0 Intensity0 60 27.004816 55.0
60 Segmentation0 Intensity0 61 35.594028 48.0
61 Segmentation0 Intensity0 62 43.113311 40.0
62 Segmentation0 Intensity0 63 16.436543 43.0

63 rows × 5 columns

Nyxus definiert auch Merkmalsgruppen, falls man beispielsweise an allen Formparametern interessiert ist:

nyx = Nyxus(['*ALL_MORPHOLOGY*'])
features = nyx.featurize(intensity_image, label_image)
features
mask_image intensity_image label AREA_PIXELS_COUNT AREA_UM2 CENTROID_X CENTROID_Y WEIGHTED_CENTROID_Y WEIGHTED_CENTROID_X MASS_DISPLACEMENT ... ROUNDNESS PERIMETER DIAMETER_EQUAL_PERIMETER EDGE_MEAN_INTENSITY EDGE_STDDEV_INTENSITY EDGE_MAX_INTENSITY EDGE_MIN_INTENSITY CIRCULARITY CONVEX_HULL_AREA SOLIDITY
0 Segmentation0 Intensity0 1 618.0 618.0 13.996764 19.925566 20.964692 14.569964 1.186736 ... 0.556444 90.0 28.647890 89.511111 54.640242 232.0 40.0 0.979167 723.0 0.854772
1 Segmentation0 Intensity0 2 277.0 277.0 5.386282 62.841155 64.028221 5.826781 1.266162 ... 0.538386 60.0 19.098593 108.400000 56.037276 200.0 48.0 0.983317 404.5 0.684796
2 Segmentation0 Intensity0 3 851.0 851.0 13.683901 108.360752 109.423605 14.046006 1.122842 ... 0.955491 101.0 32.149299 99.881188 67.339036 240.0 40.0 1.023878 1007.5 0.844665
3 Segmentation0 Intensity0 4 587.0 587.0 10.768313 154.402044 155.352659 11.091610 1.004086 ... 0.897266 83.0 26.419721 95.807229 66.335154 248.0 24.0 1.034775 699.0 0.839771
4 Segmentation0 Intensity0 5 585.0 585.0 14.471795 245.709402 247.626062 14.553933 1.918420 ... 0.652867 86.0 27.374650 133.209302 77.210349 240.0 40.0 0.996975 1265.0 0.462451
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
58 Segmentation0 Intensity0 59 26.0 26.0 243.000000 76.500000 77.497093 243.941860 1.371603 ... 0.831872 14.0 4.456338 95.428571 7.334998 112.0 88.0 1.291111 334.0 0.077844
59 Segmentation0 Intensity0 60 166.0 166.0 250.192771 127.439759 128.530223 251.759279 1.908680 ... 0.285586 55.0 17.507044 119.127273 66.571892 216.0 48.0 0.830417 1251.5 0.132641
60 Segmentation0 Intensity0 61 146.0 146.0 250.089041 178.952055 179.750499 251.684232 1.783857 ... 0.346108 48.0 15.278875 115.166667 71.587273 248.0 40.0 0.892360 1038.0 0.140655
61 Segmentation0 Intensity0 62 108.0 108.0 250.518519 234.500000 235.496648 252.100559 1.869802 ... 0.360323 40.0 12.732395 119.600000 75.242105 248.0 40.0 0.920994 813.0 0.132841
62 Segmentation0 Intensity0 63 103.0 103.0 250.912621 73.990291 74.896894 252.377640 1.722849 ... 0.274059 43.0 13.687325 117.395349 64.420545 224.0 48.0 0.836672 1347.5 0.076438

63 rows × 32 columns

Übung#

Erstellen Sie eine Tabelle nur mit solidity, circularity und roundness.